Mark Scheme (Results) October 2023 Pearson Edexcel International Advanced Subsidiary Level In Chemisty (WCH12) Paper 01 Unit 2: Energetics, Group Chemistry, Halogenoalkanes and Alcohols #### **Edexcel and BTEC Qualifications** Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus. ### Pearson: helping people progress, everywhere Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk October 2023 Question Paper Log Number P75069A Publications Code WCH12_01_MS_2310 All the material in this publication is copyright © Pearson Education Ltd 2023 #### **General Marking Guidance** - All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last. - Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions. - Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie. - There is no ceiling on achievement. All marks on the mark scheme should be used appropriately. - All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. - Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited. - When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted. - Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response. ## **Section A** | Question
Number | Answer | Mark | |--------------------|---|----------| | 1 | The only correct answer is C ($CF_4(g) \rightarrow C(g) + 4F(g)$) | (1) | | | A is incorrect because this equation represents the bond formation of 4 CF bonds and is exothermic | Computer | | | B is incorrect because this equation represents the enthalpy change of formation of CF_4 from its elements | | | | $m{D}$ is incorrect because this equation represents the enthalpy change of the reaction of CF_4 to its elements | | | Question
Number | Answer | Mark | |--------------------|--|-----------------| | 2 | The only correct answer is A (-554 – 394 + 1216) B is incorrect because the sign of the enthalpy change of formation of the reactant is incorrect C is incorrect because the sign of the enthalpy change of formation of the products is incorrect | (1)
Computer | | $m{D}$ is incorrect because sign of the enthalpy change of formation of both the reactant and products is incorrect | | |---|--| | | | | | | | | | | Answer | Mark | |---|--| | The only correct answer is D (C ₉ H ₂₀) | (1) | | A is incorrect because the increment is \sim 630 kJ mol ⁻¹ so expected enthalpy change of combustion would be | | | $-4139 \text{ kJ mol}^{-1}$ | Computer | | B is incorrect because the increment is \sim 630 kJ mol ⁻¹ so expected enthalpy change of combustion would be | | | $-4769~kJ~mol^{-1}$ | | | C is incorrect because the increment is $\sim 630 \text{ kJ mol}^{-1}$ so expected enthalpy change of combustion would be $-5300 \text{ kJ mol}^{-1}$ | | | Answer | Mark | | | | | The only correct answer is D (H_2S , \checkmark , \checkmark , X) | (1) | | ${f A}$ is incorrect because boron trifluoride is not polar , does not contain hydrogen and has London forces | Computer | | | The only correct answer is D (C ₉ H ₂₀) A is incorrect because the increment is ~630 kJ mol ⁻¹ so expected enthalpy change of combustion would be −4139 kJ mol ⁻¹ B is incorrect because the increment is ~630 kJ mol ⁻¹ so expected enthalpy change of combustion would be −4769 kJ mol ⁻¹ C is incorrect because the increment is ~630 kJ mol ⁻¹ so expected enthalpy change of combustion would be −5399 kJ mol ⁻¹ Answer The only correct answer is D (H ₂ S, ✓, ✓, X) | | B is incorrect because methane does not hydrogen bond | | |--|--| | ${f C}$ is incorrect because ammonia is polar and has hydrogen bonds | | | Question | Answer | Mark | |----------|---|----------| | Number | | | | 5 | The only correct answer is A (butan-1-ol) | (1) | | | B is incorrect because the hydrocarbon section of the molecule is branched | | | | C is incorrect because the hydrocarbon section of the molecule is branched | Computer | | | D is incorrect because pentane does not hydrogen bond | | | | | | | Question
Number | Answer | Mark | |--------------------|---|----------| | 6 | The only correct answer is C (4) | (1) | | | $m{A}$ is incorrect because neither the oxygen atoms nor the hydrogen atoms balance | Computer | | | $m{B}$ is incorrect because neither the oxygen atoms nor the hydrogen atoms balance | | **D** is incorrect because neither the oxygen atoms nor the hydrogen atoms balance | Question
Number | Answer | Mark | |--------------------|---|----------| | 7 | The only correct answer is D $(S_2O_3^{2-} + 2H^+ \rightarrow SO_2 + S + H_2O)$ | (1) | | | $m{A}$ is incorrect because copper is oxidised and nitrogen is reduced | Computer | | | $m{B}$ is incorrect because iodine is oxidised and some of the oxygen in ozone is reduced | | | | $oldsymbol{C}$ is incorrect because the reverse reaction is a disproportionation | | | | | | | Question
Number | Answer | Mark | |--------------------|---|-----------------| | 8 | The only correct answer is C (bromine, hydrogen bromide and sulfur dioxide only) A is incorrect because hydrogen bromide is oxidised by concentrated sulfuric acid | (1)
Computer | | B is incorrect because the bromide ions reduce the sulfuric acid to sulfur dioxide | | |--|--| | D is incorrect because the bromide ions are not strong enough reducing agents to further reduce the sulfuric acid | | | Question
Number | Answer | Mark | |--------------------|---|----------| | 9 | The only correct answer is C (solubility of the sulfates) | (1) | | | $m{A}$ is incorrect because the atomic radius increases | Computer | | | B is incorrect because the reactivity of the elements increases | | | | D is incorrect because the thermal stability of the nitrates increases | | | Question
Number | Answer | Mark | |--------------------|---|----------| | 10 | The only correct answer is A (0.33) | (1) | | | $m{B}$ is incorrect because the increase in volume due to added alkali has been ignored | Computer | | $oldsymbol{C}$ is incorrect because the moles of reactant have been added together | | |---|--| | $m{D}$ is incorrect because the increase in volume due to the added acid has been ignored | | | Question
Number | Answer | Mark | |--------------------|--|----------| | 11(a) | The only correct answer is D (rate decreases and yield increases) | (1) | | | $m{A}$ is incorrect because a decrease in temperature would decrease the rate but increase the yield | Computer | | | B is incorrect because a decrease in temperature would decrease the rate | | | | C is incorrect because a decrease in temperature would increase the yield | | | Question | Answer | | | Number | | Mark | | 11(b) | The only correct answer is B (rate increases and yield increases) | (1) | | | A is incorrect because an increase in pressure would increase the yield | Computer | | $oldsymbol{C}$ is incorrect because an increase in pressure would increase the rate and increase the yield | | |--|--| | D is incorrect because an increase in pressure would increase the rate | | | | | | Question
Number | Answer | Mark | |--------------------|---|----------| | 12 | The only correct answer is C (the mixture becomes more yellow) | (1) | | | A is incorrect because the position of equilibrium would change | Computer | | | B is incorrect because coloured ions would still be present | | | | $m{D}$ is incorrect because the removal of the hydrogen ions would move the position of equilibrium to the left | | | Question
Number | Answer | Mark | |--------------------|--|----------| | 13(a) | The only correct answer is A (1-methylcyclopentanol) | (1) | | | B is incorrect because 2-methylcyclopentanol is a secondary alcohol | Computer | | | C is incorrect because 2-methylbutan-1-ol is a primary alcohol | | | | D is incorrect because 3-methylpentan-2-ol is a secondary alcohol | | | Question
Number | Answer | Mark | |--------------------|--|----------| | 13(b) | The only correct answer is C (phosphorus(V) chloride) | (1) | | | A is incorrect because acidified aqueous potassium dichromate(VI) does not oxidise tertiary alcohols | Computer | | | B is incorrect because bromine water does not react with alcohols | | | | D is incorrect because sodium carbonate solution does not react with alcohols | | | Question
Number | Answer | Mark | |--------------------|---|----------| | 14(a) | The only correct answer is D (C=O stretching at 1720 - 1700 cm ⁻¹) | (1) | | | A is incorrect because the alcohol will have been oxidised | Computer | | | B is incorrect because an aldehyde is not an oxidation product of a secondary alcohol | | | | $m{C}$ is incorrect because the ketone cannot be further oxidised by acidified potassium dichromate(VI) | | | Question
Number | Answer | Mark | |--------------------|--|----------| | 14(b) | The only correct answer is B (C=O stretching at 1740 – 1720 cm ⁻¹) | (1) | | | A is incorrect because the aldehyde product will distil at a lower temperature than the reactant | Computer | | | $m{C}$ is incorrect because the aldehyde is removed from the oxidising agent so cannot be further oxidised | | | | D is incorrect because a ketone is not formed when a primary alcohol is oxidised | | | Question | Answer | Mark | |----------|---|----------| | Number | | | | 15 | The only correct answer is B (the C-Cl bond is stronger than the C-Br bond) | (1) | | | A is incorrect because the solubility of the halogenoalkane does not affect the rate | Computer | | | C is incorrect because the polarity of the C-halogen bond does not affect the rate | | | | D is incorrect because the solubility of the silver salt does not affect the rate | | | Question
Number | Answer | Mark | |--------------------|---|----------| | 16 | The only correct answer is C (2.26) | (1) | | | A is incorrect because this is half the mass of the product | Computer | | | B is incorrect because only one OH group is replaced by chlorine | | | | C is incorrect because this is double the mass of the product | | | Question
Number | Answer | Mark | |--------------------|---|----------| | 17 | The only correct answer is B (2-chloropropane) | (1) | | | A is incorrect because a primary amine would be formed | Computer | | | C is incorrect because alkanes do not react with ammonia | | | | D is incorrect because alkenes do not react with ammonia | | ### **TOTAL FOR SECTION A = 20 MARKS** A B C D 4 5 5 6 ## **Section B** | Answer | Additional Guidance | Mark | |--|--|---| | An answer that makes reference to the following point: | | (1) | | 1. balanced ionic equation | $\mathrm{H^{+}}$ + $\mathrm{OH^{-}}$ \rightarrow $\mathrm{H_{2}O}$ | Graduate | | | Accept $H_2O^+ + OH^- > 2H_2O$ | | | | Accept multiples | | | | Ignore state symbols even if incorrect | | | | An answer that makes reference to the following point: 1. balanced ionic equation | An answer that makes reference to the following point: $H^{+} + OH^{-} \rightarrow H_{2}O$ Accept $H_{3}O^{+} + OH^{-} \rightarrow 2H_{2}O$ | | Question | | | | |----------|--------|---------------------|------| | Number | Answer | Additional Guidance | Mark | | 18(a)(ii) | An ar | nswer that makes reference to the following points: | | (2) | |-----------|-------|---|---|--------| | | 1. | heat energy released under standard conditions (|)Allow enthalpy change under standard conditions | Expert | | | | | Allow for standard conditions 1 atm / 1(.01) \times 10 ⁵ Pa and a stated temperature / 298K / 25°C | | | | | | Ignore standard states | | | | | | Do not award energy required | | | | | | | | | | 2. | (when) 1 mol of water is produced (by the reaction of acid (with alkali) | | | | | | | | | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|--------| | 18(b)(i) | An answer that makes reference to the following points: | | (2) | | | 3. two lines of best fit drawn (1) | Cooling may be shown as straight line or smooth curve | Expert | | | | $\Delta T = 26.8 - 22.4 = 4.4^{\circ}C$ | | | | | Accept value between 4.2 °C and 4.6 °C from a correct vertical extrapolation at 120s | | | | | Example of extrapolation | | | | | 26 Temperature /*C | | | Question | | | | |----------|--------|---------------------|------| | Number | Answer | Additional Guidance | Mark | | | | | | | 18(b)(ii) | An an | swer that makes reference to the following points: | | Example of calculation: | (3) | |-----------|-------|--|-----|--|--------| | | 5. | energy transferred to solutions | (1) | $0.05 \times 4.2 \times 4.4 = 0.924 \text{ (kJ)}$
$50 \times 4.2 \times 4.4 = 924 \text{ (J)}$ | Expert | | | 6. | moles of water formed | (1) | $(25 \div 1000) \times 0.8 = 0.02 \text{(mol)}$ | | | | 7. | enthalpy change of neutralisation with negative sign and units | (1) | $0.924 \div 0.02 = -46.2 \text{ kJ mol}^{-1} / -46,200 \text{ J mol}^{-1}$ TE on b(i) and throughout b(ii) Ignore SF except 1 SF | | | Question Number | Answer | Additional Guidance | Mark | |------------------------|---|---|--------| | 18(b)(iii) | An explanation that makes reference to the following points: | | (2) | | | 1. (because the calculation has not taken into account the) energy required to heat the calorimeter/ the (total) heat capacity would be greater | Ignore references to the relative heat capacity of copper/water(solution) | Expert | | | 2. the value(of the enthalpy change of neutralisation) would be more exothermic/more negative (1) | Allow higher/ increase/ greater | | | Question Number | Answer | Additional Guidance | Mark | |------------------------|---|--------------------------------|-----------------| | | An answer that makes reference to the following points: nucleophilic and substitution(reaction) | Allow nucleophile substitution | (1)
Clerical | | Question Number | Answer | Additional Guidance | Mark | |------------------------|--|---|--------| | 18(c)(ii) | An answer that makes reference to the following points: | Example of mechanism | (3) | | | | Домониция — — — — — — — — — — — — — — — — — — — | | | | 3. dipole on C-Br bond | | Expert | | | 4. lone pair on O of OH ⁻ | | | | | 5. curly arrow from lone pair to C of C-Br . | | | | | If no lone pair shown, allow curly arrow from O | | | | | 6. arrow from C-Br to Br or just beyond | Allow product as structural formula | | | | | Allow NaBr | | | | 7. organic product | Ignore Na ⁺ | | | | | Do not award HBr | | | | | 6 points correct scores (3) | | | | | 4 /5 points correct scores (2) | | | 2 / | / 3 points correct scores (1) | | |-----|---|--| | Igu | gnore intermediate/ transition state if shown | Question Number | Answer | Additional Guidance | Mark | |------------------------|---|--|----------| | 18(c)(iii) | An answer that makes reference to the following points: | | (2) | | | | Do not award addition/substitution/dehydration/acid/base | Graduate | | | 2. ethanol / alcohol (1) | Allow ethanolic /alcoholic solution | | (Total for Question 18 = 16 marks) | Question
Number | Answer | Additionl Guidance | Mark | |--------------------|--|--------------------|------| | 19(a)(i) | An answer that makes reference to the following point: | | (1) | | yellow (precipitate/solid) | Allow pale yellow | Clerical | |----------------------------|-------------------|----------| | | | | | Question | | Answer | | Additional Guidance | Mark | |-----------|----|-------------------------------------|-----|--|--------| | Number | | | | | | | 19(a)(ii) | | | | Example of calculation | (3) | | | 3. | moles of silver iodide | (1) | $0.162 \div (107.9 + 126.9) = 6.8995 \times 10^{-4} / 0.00068995 $ (mol) | Expert | | | 4. | mass of potassium iodide in mixture | (1) | $6.8995 \times 10^{-4} \times (39.1 + 126.9) = 0.11453 \text{ (g)}$ | | | | 5. | % of potassium iodide in mixture | (1) | $(0.11453 \div 2.49) \times 100 = 4.5997$
= $4.6 / 4.60 (\%)$ | | | | | | | Answer to 2 or 3 SF | | | | | | | Allow TE on transcription errors unless final answer is >100% | | | | | | | Do not award 4.5% for M3 | | | Question Number | Answer | Additional Guidance | Mark | |------------------------|---|--|------| | 19(b) | An answer that makes reference to the following points: | Oxidation numbers may be shown on equation | (2) | | 1. | manganese reduced from (+) 4 to (+) 2 | (1) | | Expert | |----|--|-----|--|--------| | 2. | chlorine is oxidised from −1 to 0 | (1) | Allow chloride for chlorine | | | | | | If no other mark awarded: | | | | | | Allow 1 mark for manganese reduced and chlorine oxidised | | | | | | OR | | | | | | all four correct oxidation states of Mn and Cl | | | Question Number | Answer | Additional Guidance | Mark | |------------------------|---|--|----------| | 19(c) | An answer that makes reference to the following points: | | (2) | | | 3. aqueous layer is yellow (1) | Allow orange / brown /straw / colourless | | | | | Do not award red/red-brown/yellow-green | Graduate | | | 4. hexane layer is purple/pink/violet (1) | Allow lilac | | | | | If colours are reversed allow one mark. | | | | | | | | Question | Answer | Additional Guidance | Mark | |----------|--------|---------------------|------| | | | | | | Number | | | | | | |--------|--|--|--|---|--------| | *19(d) | logically structured answer with linkages and fully sustained reasoning. The following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table shows how the marks should be awarded for indicative in the following table should be awarded for indicative in the following ta | | | Guidance on how the mark scheme should be applied. | (6) | | | | | | The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 | Expert | | | | | | mark for partial structure and some linkages and lines of reasoning). | | | | Number of indicative marking points seen in answer | Number of marks awarded for indicative marking points | | If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). | | | | 5-4 | 3 | | | | | | 3-2 | 2 | | | | | | 1 | 1 | _ | | | | | 0 | 0 | | In general it would be expected that | | | | The following table shows how the marks should be awarded for structure | | | 5 or 6 indicative points would get 2 reasoning marks 3 or 4 indicative points would get 1 reasoning mark | | | | | | 0, 1 or 2 indicative points would get zero reasoning marks | | | | | | Number of marks awarded for structure of answer and sustained lines of reasoning | r | | | | Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning | 2 | If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). | | |--|---------------------------------|--|--| | Answer is partially structured with some linkages and lines of reasoning | 1 | Comment: Look for the indicative marking points first, then consider the mark for the structure of the answer | | | Answer has no linkages between points and is unstructured | 0 | and sustained line of reasoning Accept instantaneous/induced dipole/ IDID/dispersion/ van der Waals' forces for London | | | Indicative content | | forces | | | IP1 iodine has (only) London forces IP2 water molecules form hydrogen | · | | | | permanent dipoles) IP3 hydrogen bonds are stronger th | an London forces/ the strongest | | | | (intermolecular force) IP4 hexane forms (only) London for bonds | rces/cannot form hydrogen | | | | IP5 London forces formed between (in strength) to those (broken) in he | | Allow London forces between iodine and hexane are greater than those between hexane | | | forces with water | not form hydrogen bonds/ only forms weak London
er so the (hydrogen) bonds between water molecules
en (so iodine does not dissolve in water) | | | |-------------------|--|--|--| | | | Any reference to both hexane and iodine having permanent dipole interactions penalise in 1 IP only. Any statement that hexane has more/stronger London forces than iodine is incorrect so loses 1 reasoning mark. | | (Total for Question 19 = 15 marks) | Questi | n | | | |--------|--------|---------------------|------| | Numb | Answer | Additional Guidance | Mark | | 20(a)(i) | An answer that makes reference to the following points | S: | | (2) | |----------|--|-----|--|----------| | | 5. equation | (1) | $CO_3^{2-}(s/aq) + 2H^+(aq) \rightarrow CO_2(g) + H_2O(1)$ | | | | | | $CO_3^{2-}(s/aq) + 2H_3O^+(aq) \rightarrow CO_2(g) + 3H_2O(l)$ | Graduate | | | 6. state symbols | | M2 depends on M1 or near miss e.g. full equation or uncancelled spectator ions | | | Question Number | Answer | Additional Guidance | Mark | |------------------------|--|--|----------| | 20(a)(ii) | | | (1) | | | 7. the mixture/solution would go cloudy/milky/ (1) | Ignore CaCO ₃ formed | | | | a white precipitate would form | Do not award effervescence/fizzing/misty | Graduate | | Question Number | | Answer | | Additional Guidance | Mark | |------------------------|----|--|-----|---|--------| | 20(b)(i) | | | | Example of calculation: | (4) | | | 8. | calculate mols hydrochloric acid in titre | (1) | $18.95 \times 0.0500 \times 10^{-3} = 9.475 \times 10^{-4} $ (mols) | Expert | | | 9. | calculate mols calcium hydroxide in 25.0 cm ³ | (1) | $9.475 \times 10^{-4} \div 2 = 4.7375 \times 10^{-4} $ (mols) | | | 10. | calculate mass calcium hydroxide in 25.0 cm ³ | (1) | $4.7375 \times 10^{-4} \times (40.1+34) = 3.51049 \times 10^{-2} \text{ (g)}$ | |-----|--|-----|---| | 11. | calculate mass calcium hydroxide in 1.00 dm ³ | | $3.51049 \times 10^{-2} \times 1000 \div 25 = 1.4042 \text{ (g dm}^{-3}\text{)}$ Ignore SF except 1 SF Alternative method for M3/M4 $4.7375 \times 10^{-4} \times 1000 \div 25 = 0.01895/1.895 \times 10^{-2}$ | | 12. | moles calcium hydroxide in 1 dm ³ | (1) | $1.895 \times 10^{-2} \times (40.1+34) = 1.4042 \text{ (g dm}^{-3})$ | | 13. | mass calcium hydroxide in 1 dm ³ | (1) | If 25/18.95 swapped answer of 2.44 scores 2 | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|--------| | 20(b)(ii) | An answer that makes reference to the following points: | | (2) | | | 14. strontium hydroxide is more soluble than calcium hydroxide (1) | Accept because solubility of the hydroxides increases down the group | Expert | | | 15. (so) titre value would be greater(than that for calcium) or reverse (1) | M2 must be consistent with M1. | | | ALLOW one mark for strontium hydroxide is less | | |--|---| | soluble so titre value would be smaller | | | | 1 | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|-------------------------------------|--------| | 20(c) | An explanation that makes reference to three of the following points 16. the concentration of carbonic acid /H ₂ CO ₃ will increase | | (3) | | | (1) | | Expert | | | 17. the equilibrium position will move to the RHS (1) | | | | | 18. (the hydrogen ion concentration will increase so) the acidity will increase (1) | Do not award M3 if M2 is incorrect. | | (Total for Question 20 = 12 marks) **TOTAL FOR SECTION B = 42 MARKS** # **Section C** | Question Number | Answer | Additional Guidance | Mark | |------------------------|---|---|--------| | 21(a)(i) | An answer that makes reference to the following points: | Example of calculation: | (3) | | | 19. calculate mass oxygen in compound X (1) | 1.92 - (1.08 + 0.131) = 0.709 (g) | Expert | | | 20. calculate moles carbon,hydrogen and oxygen (1) | $1.08 \div 12 = 0.0900 \text{ (mols) carbon}$ | | | | | 0.131(mols) hydrogen | | | | | $0.709 \div 16 = 0.044313 \text{ (mols) oxygen}$ | | | | 21. mole ratio and empirical formula (1) | 0.09 : 0.131 : 0.043688 | | | | | 2.03 ; 2.96 : 1 | | | | | C ₂ H ₃ O | | | | | TE from incorrect masses but rounding must be appropriate | | | | If only two elements considered award M3 if correct (C ₂ H ₃) | | |--|--|--| Question Number | Answer | Additional Guidance | Mark | |------------------------|--|----------------------------------|--------| | 21(a)(ii) | An answer that makes reference to the following points: | | (2) | | | 22. $C_4H_6O_2$ (1) | | | | | 23. empirical formula mass $x = 2$ mass of molecular ion (1) | Evidence of $M_r = 86$ scores M2 | Expert | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---------------------|----------| | 21(a)(iii) | An answer that makes reference to the following points: | | (2) | | | 24. C=C/alkene/carbon-carbon double bond (1) | | | | | | | Graduate | | 25. | -COOH/carboxylic acid/carboxyl | (1) | Do not award carbonyl | | |-----|--------------------------------|-----|-----------------------|--| | | | | | | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|----------| | 21(a)(iv) | An answer that makes reference to the following points: | | (2) | | | 26. peak at 41 C_3H_5+ (1) | Allow any acceptable structure with C ₃ H ₅ + | | | | | | Graduate | | | 27. peak at 45 COOH+ (1) | Allow CO ₂ H+ | | | | | Do not award CHO ₂ + | | | | | Positive charge can be anywhere on ion | | | | | Penalise omission of positive charge and/or presence of negative charge once only | | | Question Number | A | Answer | Addi | tional Guidance | Mark | |------------------------|---|-------------------------|-------------------------------|-----------------|--------| | 21(a)(v) | An answer that makes reference t | to the following point: | | | (1) | | | ** Not drag joint to figure 1% fit the first be to level are all a shall wish fit to good to be come fit in common. | | Accept | | | | | | | To produce with the displays. | | Expert | The arrangement around the double bond must be displayed. | | |--|---|--| | | Accept skeletal formula | | | Question
Number | | Answer | | Additional Guidance | Mark | |--------------------|-------|---|-----|--|--------| | 21(b)(i) | An ex | planation that makes reference to the following points: | | | (3) | | | 28. | provides an alternative pathway/route with a lower activation energy | (1) | Allow E _a ^{cat} at a lower energy shown on diagram | Expert | | | 29. | so a greater proportion of molecules have $E > E_a$ /area under the curve to the right of E_a increases | (1) | M2 can be shown on diagram | | | | 30. | so a higher proportion of collisions are successful | (1) | Allow higher frequency of successful collisions | | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|----------| | 21(b)(ii) | An answer that makes reference to the following point: | | (1) | | | | Accept correct displayed/skeletal/structural formulae provided aldehyde and carboxyl groups are clear. | Graduate | | | Do not award molecular formulae/-COH in propenal | | |--|--|--| | | -CHO2in carboxylic acid | | | Question Number | Answer | | Additional Guidance | Mark | |------------------------|--|-----|--|----------| | 21(c)(i) | An answer that makes reference to the following points: | | | (2) | | | 2. potassium manganate(VII)/ | | | | | | potassium permanganate/KMnO ₄ | (1) | | Graduate | | | 3. acidified/cold/room temperature/dilute aqueous solution | . , | M2 depends on M1 or near miss Do not award heat(under reflux) | | | Question Number | Answer | Additional Guidance | Mark | |------------------------|---|---|--------| | 21(c)(ii) | An explanation that makes reference to two of the following points: 4. from propene the starting material is crude oil which is non-renewable/finite | Allow glycerol for propane-1,2,3-triol | (2) | | | 5. from propane-1,2,3-triol, the starting material is from biomass/uses a by-product/reduces waste from biodiesel production | Ignore references to greenhouse gases or global warming | Expert | | | 6. propane-1,2,3-triol route produces only water as unwanted (1) product | Ignore references to fermentation | | | 7. | from propene, manganese compounds need to be separated | | | |----|--|----|--| | | | | | | | (1) |) | | | | | | | | | (1) | 2) | | (Total for Question 21 = 18 marks) **TOTAL FOR SECTION C = 18 MARKS** **TOTAL FOR PAPER = 80 MARKS**